
Title: How does the cochlea decode a CV speech sounds with zero error?
Two recent publications [Singh and Allen (2012); Toscano and Allen, (2014)] argue that
consonant decoding is a binary process, with zero error above a token-dependent critical
SNR threshold, typically below -2 dB SNR. From an information theoretic point of view,
this is a ”game changer,” because it means that human consonant perception is
operating below the Shannon channel capacity theoretical bound. We shall review these
arguments, and based on our present understanding of cochlear signal processing,
explain how this decoding strategy functions. The emphasis is on how the hearing
impaired ear fails to perform this task. Speech cues are not “in the gaps,” as is
commonly assumed. An important question is the nature of the limits of the hearing
impaired ear. Existing literature will be reviewed.
Refs:

–Riya Singh and Jont Allen (2012). The influence of stop consonants perceptual

features on the Articulation Index model, J. Acoust. Soc. Am., v.131, 3051-3068

–Toscano, Joseph and Allen, Jont B (2014). Across and within consonant errors for

isolated syllables in noise, Journal of Speech, Language, and Hearing Research,

doi:10.1044/2014 JSLHR-H-13-0244
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I – Introduction (3 mins)

Statement of the problem:

A fundamental understanding of the Human Speech code
Identify the cues in individual CV utterances

-Plosives (e.g., /p, t, k/ and /b, d, g/)
-Fricatives (e.g., /T, S, Ù, s, h, f/ and /z, Z, v, D/)
-With vowels /o, E, I/

Applications:

Reduce variability in ASR at front-end
Hearing Aids, Cochlear Implants
Smart Telcom products
TTS (Text to speech)
Intelligibility modifications (Robustness problem)

Speech enhancement in noise
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Objective

Rigorous procedures for analyzing and modifying speech in noise
Objective: Identify perceptual features, i.e., speech cues

CUES

PSYCHOPHYSICALPHYSICAL

ACOUSTIC FEATURES

LISTENERΦ Ψ

Methods: Three metrics:

AI-Gram (speech audibility measure)
Confusion matrix Ph|s (CV discrimination measure)
Confusion patterns (Ph|s(SNR))

Results: ONSETS, MODULATIONS and DURATION define the cues
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II – Historical HSR Studies (4 mins)

Lord Rayleigh 1908 and George Campbell 1910

First electronic articulation experiments

Harvey Fletcher’s 1921 Articulation Index AI

Ψ: Massive data collection, for 30 years
Φ: Accurate AI predictions of Average Syllable Scores

French and Steinberg 1947 first publish AI

Shannon The Theory of Information (TI) 1948+

Miller’s work based on Shannon’s TI
G.A. Miller, Heise and Lichten Entropy H 1951
G.A. Miller & Nicely CM Ph|s(SNR) 1955

Context studies:

Boothroyd JASA 1968; Boothroyd & Nittrouer 1988
Bronkhorst et al. JASA 1993
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Speech research

1910-1960: Bell Labs (Galt, Fletcher, Kelly)
1940-1960: Haskins Lab Synthetic speech (Cooper, Liberman)
1960-1990: MIT Consonant features unknown (Ken Stevens et al.)
1980-2010: ASR at AT&T, IBM, BBN, University research
Not designed to be robustness to noise
2003-2015: UIUC (Allen)

Cochlear research

1910-1950: Bell Labs (Wegel+Lane, Fletcher, Munson, Steinberg)
1960-2015: MIT+Harvard HSBT
1970-2015: NIH funded University research
1970-2003 Bell Labs (Allen)
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Allen et. al HSR Experiments 2004-2011

Year Experiment Student &Allen Details Publications

2004 MN04(MN64) Phatak, Lovitt MNR JASA
2005 MN16R Phatak, Lovitt MN55R JASA
2005 HIMCL05 Yoon, Phatak 10 HI ears JASA
2006 HINALR05 Yoon et al. 10 HI ears JSLR (2011)
2006 Verification Regnier /ta/ JASA
2006 CV06-s/w Phatak/Regnier 8C+9V SWN/WN
2007 CV06 Pan CV06 MS Thesis
2007 HL07 Li Hi/Lo pass JASA
2008 TR08 Li Furui86 ASSP
2009 3DDS Li plosives JASA: TLSP
2009 Verification Cvengros burst mods Thesis
2009 Verification Abhinauv burst mods JASA
2009 mn64 NZE Singh PA07 JASA
2010 HIMCL10-I,II,III Trevino, Han 46 HI ears @MCL JASA/Sem Hear.
2011 3DDS Li Fricatives JASA
2011 HINAL11-IV Han 17 HI ears w NALR PhD Thesis (Ch. 3)
2014 CV06 Toscano 30 NH ears JSLHR
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Recent Speech Studies 2000-2013

Three Recent Literature Reviews:

Wright 2004 “A review of perceptual cues and cue robustness”
Allen 2005 “Articulation & Intelligibility” Morgan-Claypool
McMurray-Jongman 2011 “speech categorization”

Ten Detailed Studies:

Jongman 2000 “Acoustic characteristics of fricatives”
Smits 2000 “Temporal distribution . . . in VCVs”
Hazan-Simpson 2000 ”cue-enhancement . . . of nonsense words”
Jiang 2006 “perception of voicing in plosives”
McMurray-Jongman 2011 “information for speech categorization”
Alwan 2011 “Perception of place of articulation . . . ”
Jørgensen-Dau 2011; 3 dB change; Modulation references
Das-Hansen 2012 “Speech Enhancement c̄ Phone Classes”
Consonant perception is binary with variable thresholds

Singh-Allen 2012
Toscano-Allen 2013

Jont Allen UIUC & Beckman Inst, Urbana ILCochlear nonlinearities and phoneme recognition June 14, 2015 8 / 1



Recent Speech Studies 2000-2013

Three Recent Literature Reviews:

Wright 2004 “A review of perceptual cues and cue robustness”
Allen 2005 “Articulation & Intelligibility” Morgan-Claypool
McMurray-Jongman 2011 “speech categorization”

Ten Detailed Studies:

Jongman 2000 “Acoustic characteristics of fricatives”
Smits 2000 “Temporal distribution . . . in VCVs”
Hazan-Simpson 2000 ”cue-enhancement . . . of nonsense words”
Jiang 2006 “perception of voicing in plosives”
McMurray-Jongman 2011 “information for speech categorization”
Alwan 2011 “Perception of place of articulation . . . ”
Jørgensen-Dau 2011; 3 dB change; Modulation references
Das-Hansen 2012 “Speech Enhancement c̄ Phone Classes”
Consonant perception is binary with variable thresholds

Singh-Allen 2012
Toscano-Allen 2013

Jont Allen UIUC & Beckman Inst, Urbana ILCochlear nonlinearities and phoneme recognition June 14, 2015 8 / 1



Recent Speech Studies 2000-2013

Three Recent Literature Reviews:

Wright 2004 “A review of perceptual cues and cue robustness”
Allen 2005 “Articulation & Intelligibility” Morgan-Claypool
McMurray-Jongman 2011 “speech categorization”

Ten Detailed Studies:

Jongman 2000 “Acoustic characteristics of fricatives”
Smits 2000 “Temporal distribution . . . in VCVs”
Hazan-Simpson 2000 ”cue-enhancement . . . of nonsense words”
Jiang 2006 “perception of voicing in plosives”
McMurray-Jongman 2011 “information for speech categorization”
Alwan 2011 “Perception of place of articulation . . . ”
Jørgensen-Dau 2011; 3 dB change; Modulation references
Das-Hansen 2012 “Speech Enhancement c̄ Phone Classes”
Consonant perception is binary with variable thresholds

Singh-Allen 2012
Toscano-Allen 2013

Jont Allen UIUC & Beckman Inst, Urbana ILCochlear nonlinearities and phoneme recognition June 14, 2015 8 / 1



III – Methods 8 mins

Psychophysics:

Consonant-vowel CV speech recognition Ph|s(SNR)
Several types of additive noise
Large number of trials

>20 talkers and >20 listeners

Modeling:

Information Theory IT ≡ Articulation index AI
Confusion matrix CM scores: Ph|s(SNR)
AI to model mean phone errors Pc(SNR|s) =

∑

h Ph|s(SNR)

Signal processing:

AI-gram (crude cochlear model)
Frequency, time, intensity truncation 3d -DS
Short-Time Fourier Transform STFT modifications
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The CM Ph|s(SNR)

Miller-Nicely’s 1955 articulation matrix Ph|s(SNR), measured at
[-18, -12, -6 shown, 0, 6, 12] dB SNR

UNVOICED VOICED
RESPONSE

S
T

IM
U

LU
S

NASAL

Confusion groups ≡ inhomogeneous cues
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Average phone scores vs. SNR: Ph|s(SNR)

Consonant chance performance is -20 dB-SNR in white noise
Phatak Allen, 2007
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Row of CM Ph|/t/

Utterance phone scores are heterogeneous!
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Phone groups are due to shared sub-phonemic units

CV Morphs
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AI Model of human speech recognition HSR

Research Goal:
Identify elemental speech cues

A cue is defined as a perceptual feature

Cue errors are measured by band errors ek
.

Layer Layer

F
ilt

er
s

La
ye

r

La
ye

r

Discrete objects???Analog objects

WordsSyllablesPhonesCueCochleaLayer:

s(t)

s

Ψ ”Back-end”

Measure: ek

Formula:
WAIk S = s

3

= 0.82AIk = 1− e1e2...e20∝ snrk dB

Φ ”Front-end”
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Model of human listeners as a Shannon Channel

Channel capacity theorem specifies the maximum information rate

C ≡

∫

log2
(

1 + SNR2(f )
)

df (1)

For a Maximum Entropy (MaxEnt) speech source, the maximum
information rate is determined by the SNR
The AI-gram is a related measure:
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Methods: 3d Deep Search (3DDS)

3d Deep-Search via truncation:

SNR truncation (i.e., masking)
Frequency truncation (High/Low-pass filtering)
Time truncation (Furui 1986)
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III–Results 21 mins

Discussion of AI

Across consonant error
Within consonant error

Examples and Demos of events

Plosive CV events
Fricative CV events

Conflicting cues
DEMOS:

Event isolation
Consonant morphing
Consonant enhancement
Conflicting cues within consonants
Sentence meaning modification
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Results 1: The Across-consonant variance is Huge
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AI(SNR) characterizes the average consonant error (Pe = echancee
AI
min)

AI ≈ SNR assuming SWN
Log-error is linear in AI: logPe = log echance +AI · log emin = β0+β1AI
Note the huge across-consonant Standard Deviation
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Within-consonant Error /p/ Singh-Allen 2012

56 /p/+/o,e,I/ CV tokens: SNR > -10 dB SNR
Bimodal error distribution:

41/56: Zero error (ZE); Ntrials = 38, Nsubj=25

15/56: Non-zero error (NZE); 11 ≈ ZE (error: 1/38)

All /p/ utterances 

Zero error above 

-10 dB 

Zero error above 

-10 dB 

Non-zero error above -

10 dB 

Zero error above 

-10 dB 

Non-zero error above -

10 dB 

Zero error above 

-10 dB (ZE) 

Non-zero error above 

 -10 dB (NZE) 

1 3 5 7  22 

56

41 15 

 # Errors in low-noise environment 

f101pe 

m115p@ 

m118pI 

f109pa 

f119pe 

m107pa 

m107pI 

m111pI 

m112pa 

m115pa 

m115pI

m107pe f113pI m112pI f106pI 

11 LE 

utterances 

1 ME 

utterance

3 HE utterances 

−22−16−10 −2 Q
1

5

10

20

40
60
80

100

∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫

SNR[dB]

P
e

rc
e

n
ta

g
e

 e
rr

o
r

15/p/ utterances in the NZE group

 

 
f101pe
f106pI
f109pa
f113pI
f119pe
m107pa
m107pe
m107pI
m111pI
m112pa
m112pI
m115pa
m115pI
m115p@
m118pI

Jont Allen UIUC & Beckman Inst, Urbana ILCochlear nonlinearities and phoneme recognition June 14, 2015 18 / 1



Within-consonant error Pe(SNR− SNR∗
50) for /p/

Error vs. SNR shifted to 50% threshold SNR∗
50 (LEFT)

Histogram of 50% error thresholds (RIGHT)

Sharp transition ⇒ Binary Plosive identification!
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3DDS: m117/tE/ SNR50 = −2 [dB] (SWN)
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3DDS: m112/tE/ SNR50 = −16 [dB] (SWN)
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Correlations of all the /t/ events Regnier-Allen (2008)

High correlation across all /t/’s in the database
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Masking of /tA/ timing cue

When the /t/ burst is masked by noise, the perception morphs to /p/
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Truncation of /tA/

0 20 40 60 80 100 120
10

−1

10
0

b
pt

Truncation from beginning of C [ms]

P
ro

ba
bi

lit
y 

co
rr

ec
t Truncation of m111ta at 12 dB

0 20 40 60 80 100 120
10

−1

10
0

b

pt

h

Truncation from beginning of C [ms]

P
ro

ba
bi

lit
y 

co
rr

ec
t Truncation of m111ta at 0 dB

0 10 20 30 40 50 60
10

−1

10
0

b

pt

f

Truncation from beginning of C [ms]

P
ro

ba
bi

lit
y 

co
rr

ec
t Truncation of f105ta at 12 dB

0 10 20 30 40 50 60
10

−1

10
0

b

pt

Truncation from beginning of C [ms]

P
ro

ba
bi

lit
y 

co
rr

ec
t Truncation of f105ta at 0 dB

This represents the normal hearing responses to a truncated /tA/,
from the start of the consonant
Morphing from /tA/ to /pA/ to /bA/ at 0 and 12 dB SNR
Similar to Furui 1986, and results of Allen et. al
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Truncation of f101 /sa/ (fricatives)

/sa/
/za/

/da/ /∂a/
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P h|
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This represents the normal hearing responses to a truncated /sA/,
from the start of the consonant
Morphing from /sA/ to /zA/ to /dA/ to /DA/
Duration is an important fricatives cue Sa to Da
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3DDS Method /Sa/

Truncation in Time, Intensity and Frequency
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3DDS Method /Sa/
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3DDS Method /ta/
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Enhancement of ta event

(c) Original /tA/ (d) Modified /tA/

METHODS: The /t/ burst is enhanced (14 dB) on the quiet sound,
then noise is added
DEMO /ta/2/ka/
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Enhancement of ta event

(e) Original /tA/ (f) Modified /tA/

METHODS: The /t/ burst is enhanced (14 dB) on the quiet sound,
then noise is added
DEMO /ta/2/ka/
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Enhancement of ta event

(g) Original /tA/ (h) Modified /tA/

METHODS: The /t/ burst is enhanced (14 dB) on the quiet sound,
then noise is added
DEMO /ta/2/ka/
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Demos by Andrea Trevino (2013)

Demo 1: /tA/ remove burst

Demo 2: ka2ta f103 , da2ga f103

Demo 3: Sa2sa m118

Demo 4: Sa2da m111

Demo 5: za voicebar removed , SA vs ZA same duration
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Summary of Consonant structure

Time-frequency structure of plosives and fricatives
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Auditory & Cochlear Modeling 1920-2015 12 min

1910-1980: Bell Labs (long history)

Fletcher 1914; Wegel & Lane 1924; Flanagan; Hall; Allen

1960-2010: MIT + Harvard HSBT

Eaton Peabody (Kiang, Siebert, Liberman, Guinan, Shera, . . . )

Netherlands, England

deBoer, Duifhuis, Evans, . . .

Australia (B. Johnstone, . . . )
1980-2011: NIH funded University research

MIT; Wash U; Boys Town; U. Wisc.; U. Mich.; Nortwestern U.

The role of cochlear modeling on speech perception is huge!

And under appreciated, IMO
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The Mammalian Cochlea
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The Human Cochlea
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The Cochlear duct
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Kiang and Moxon 1979 cochlear USM

Nonlinear upward spread of masking

Sewell, William; Hearing Research v. 14, 305-314 (1984): 1 dB/mv
EP threshold sensitivity
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Neural Onset Enhancement Delgutte 1980

Onset transients enhance the auditory nerve response, to 2 [cs]
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The Human Cochlea Allen 2000
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The Human Cochlea Allen 2000
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Conclusions I

We have:

Isolated events for CV: Plosives /p, t, k/ and /b, d, g/ and Fricatives
/T, S, Ù, s, h, f/ and /z, Z, v, D/) + Vowels /o, E, I/

for many individual talkers
via new tools (AI-gram, Event-gram and 3d -DS)

Shown that normal listeners use:

across-frequency timing coincidences

duration, modulation & bandwidth

to discriminate consonants in noise
Developed tools to:

Morphed speech sounds
Decrease or increase intelligibility. Ex: /tA/, /tE/
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Conclusions II

We have shown:

1 The existence of conflicting cues

Thus MaxEnt consonants are NOT redundant

2 that the event threshold is abrupt (i.e., 6 dB)
3 proven the AI band-product formula (yet again)
4 why the AI works

Due to the frequency and SNR event distribution

5 the role of forward and upward masking spread
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Conclusions III

This could lead to:

1 Improved automatic speech recognition front-ends
2 The design of new hearing aids
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Topics for discussion

Theory should be based on Shannon’s Theory of Information
1 SNR and Entropy (& token!) are key variables:

AI(SNR) and channel capacity C(SNR)
2 Token Phone error is binary wrt SNR
3 Tokens have a large threshold SD

Never Averaging across tokens!
Do not use DF (depends on averages)

4 Entropy is the ideal measure of confusions
5 Very few studies consider Entropy vs. SNR

NO: Fletcher 1914-1950
YES: Miller Nicely 1955

6 The AI(SNR) has a huge “across & within” consonant SD

Summary: Call upon Information Theory to:

“We eliminate the suspects one by one. We do not scatter around like
puppies.”

–Hercule Poirot
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Question your basic
assumptions

Thanks for your attention

http://auditorymodels.org

Status of the cochlear amplifier model: · · ·

Is it time for a paradigm shift?
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